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Abstract

Based on the direct parameter estimation method and the Legendre series approximation, a two-step method is

presented to estimate by measured data the physical parameters, i.e., mass, damping, stiffness and knot, of nonlinear

systems with symmetrical piecewise linear restoring force. At first, the piecewise linear restoring force of the system is

approximated by Legendre series. A least squares direct parameter estimation method is adopted to identify the mass and

damping parameters of the system and the corresponding coefficients of the Legendre series. Secondly, the physical

parameters of the piecewise linear restoring force, i.e., the primary and the secondary stiffness and the knots, are extracted

from the estimated Legendre coefficients. Neither iteration nor search process is needed in this method. The validity of the

method is demonstrated by numerical simulation on a single-degree-of-freedom and a three-degree-of-freedom system with

both noise-free data and noise-polluted data.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous methods have been developed for nonlinear system identification. However, very few works
focused on piecewise linear (PWL) systems [1]. Kerschen et al. [2] gave a good review of some popular
approaches for nonlinear system identification, some of which were developed to deal with general nonlinear
models by approximating the nonlinearity with a finite sum of known basis functions with unknown
coefficients, such as the restoring force surface (RFS) method [3], the direct parameter estimation (DPE)
method [4] and the nonlinear autoregressive moving average with exogenous inputs (NARMAX) modeling
method [5,6]. One disadvantage of these general methods is that they are not physical. In other words, the
identified parameters usually have little or no physical meaning. Another disadvantage of these methods is
that they tend to produce a very large number of model parameters, especially for systems with piecewise
linear characters. The disadvantages limit the applicability of these methods to engineering problems.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The RFS method for identifying nonlinear system parameters proposed by Masri and Caughey [3] assumes
that the input/output data and the mass of the system were known. It describes the system restoring force over
the displacement–velocity plane (i.e., phase plane) by an orthogonal polynomial series in the time domain.
Masri et al. [7] extended the approach for parameter identification of multi-degree-of-freedom systems. In
other extensions developed by Yang et al. [8] and Masri et al. [9], ordinary polynomial series are used instead
of the orthogonal polynomial series. Mohammad et al. [4] presented the DPE method to directly estimate the
physical parameters of general mechanical structures, which was discretized into lumped masses connected to
each other and to the ground by linear or nonlinear restoring force links. Various types of restoring force
links, including polynomial-formed stiffness and damping links, polynomial-formed cross-coupling
nonlinearity links, Coulomb friction links, square-law damping links and piecewise linear links, were
addressed in the model. Applications to systems with linear links, cubic nonlinearity links and/or Coulomb
friction links were demonstrated by using singular value decomposition (SVD) method for unknown
parameters estimation. It was shown that it was possible to identify all the physical parameters of a nonlinear
multi-degree-of-freedom system by using only one input excitation, and that the RFS method could be the
special case of the DPE as a byproduct. However, for cases without a priori information available about
the location of the knots or turning points of PWL nonlinearity links, the DPE method may need to be
modified by employing grid search method [1] or iteratively nonlinear least-squares technique as opposed to
non-iteratively technique. The modification increases the complexity and difficulties to implement the
algorithm for parameters estimation since the convergence of the iteration or grid searching should be
ensured. Worden and Tomlinson [10] tried to identify an impacting cantilever beam with symmetrical PWL
stiffness using the RFS method, but the results were not good because of poor instrumentation. Kerschen et al.
[1] demonstrated numerical and experimental identifications of impacting cantilever beams with symmetrical
or asymmetrical PWL stiffness using the RFS method. Two models, i.e., the polynomial model and the PWL
model, were used to represent the PWL restoring force. For the polynomial model, least-squares method could
be used directly to identify coefficients of the polynomial. For the PWL model on the other hand, the stiffness
curve was plotted and inspected to find the approximate range of the knot and the grid search method was
then utilized to increase the identification accuracy of the knot. Although the physical parameters can be
identified in this way, the computing burden is very high since the inspection and grid search processes are
involved. In fact, when the polynomial model is used to represent the nonlinear restoring forces, the identified
polynomial coefficients are relevant to the parameters of the nonlinear restoring forces. It is thus possible to
compute the parameters of the nonlinear restoring forces directly from the identified polynomial coefficients.
To overcome the limitation of the above approach in determining the knots of the system, this paper uses
Legendre polynomial series to approximate the symmetric piecewise restoring forces, and establishes the
relationship between the polynomial coefficients identified by DPE method and the corresponding physical
parameters of the restoring forces. For demonstration only systems with symmetric piecewise linear stiffness
that often occur in engineering practice are considered. All the derivations and discussions will be focused on
such systems.

2. Representation and normalization of piecewise linear functions

The mathematical model of a symmetrical PWL spring is given by

yðxÞ ¼

k1x; jxjpxs

k2xþ ðk1 � k2Þxs; xsox

k2x� ðk1 � k2Þxs; xo� xs

8><
>: (1)

where x is the displacement, k1 is the primary stiffness, k2 is the secondary stiffness, xs and �xs are the
knots of the stiffness curve and yðxÞ is the PWL restoring force. It is obvious that the PWL stiffness
function is determined by three parameters, i.e. k1, k2 and xs. The identification of the PWL nonlinearity
is just to find these parameters. In the identification process, the measured displacement signal must be
limited to a definite range of ½�xd ; xd � (Fig. 1). Here xd is a positive real number greater than xs and is
usually chosen as the absolute maximum value of the measured displacement. As a consequence, Eq. (1) is
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Fig. 1. Piecewise linear stiffness curve for identification use.
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Fig. 2. Normalized piecewise linear stiffness curve.
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rewritten as

yðxÞ ¼

k1x; jxjpxs

k2xþ ðk1 � k2Þxs; xsoxpxd

k2x� ðk1 � k2Þxs; �xdpxo� xs

8><
>: (2)

using the following transformation:

x ¼ Zxd (3)

renders Eq. (2) to be

yðZÞ ¼

r1Z; jZjpZs

r2Zþ ðr1 � r2ÞZs; ZsoZp1

r2Z� ðr1 � r2ÞZs; �1pZo� Zs

8><
>: (4)
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where Z is the normalized displacement, r1 is the normalized primary stiffness, r2 is the normalized secondary
stiffness, rs and �rs are the knots of the normalized stiffness curve, respectively, and yðZÞ is the PWL restoring
force (Fig. 2).

Once the normalized PWL parameters r1, r2 and Zs in Eq. (4) have been identified, the physical parameters
can be obtained using the transformations as follows:

k1 ¼ r1=xd

k2 ¼ r2=xd

xs ¼ Zsxd

8><
>: (5)

3. Fitting piecewise linear function with Legendre polynomials

In this section, Legendre polynomials will be used to fit the normalized PWL stiffness function in Eq. (4) by
using the least-squares method. The relationships between the Legendre polynomial coefficients and the PWL
parameters will be established as a sequel.
3.1. Legendre polynomials

The Legendre polynomials PnðxÞ can be expressed by the Rodrigues’ formula:

PnðxÞ ¼
1

2nn!

dn

dxn
½ðx2 � 1Þn� ðn ¼ 0; 1; 2; . . .Þ (6)

The first five Legendre’s polynomials are:

1; x; ð3x2 � 1Þ=2; ð5x3 � 3xÞ=2; ð35x4 � 30x2 þ 3Þ=8. (7)

Due to their orthogonality, Legendre polynomials PnðxÞ; n ¼ 0; 1; 2; 3 . . . form a complete orthogonal set on
the interval �1pxp1, and satisfy

Z 1

�1

PmðxÞPnðxÞdx ¼

2

2nþ 1
; m ¼ n

0; man

8<
: ðm; n ¼ 0; 1; 2; . . .Þ (8)

In addition, Legendre polynomials are symmetric or antisymmetric, i.e.,

Pnð�xÞ ¼ ð�1ÞnPðxÞ (9)

In other words, PnðxÞ is an even function when n is an even integer and an odd function when n takes an odd
value.
3.2. Legendre series approximation to piecewise linear function

Eq. (4) is defined on the interval ½�1; 1�, so Legendre polynomials can be used directly to approximate it in
the least-squares sense. The relationship between the Legendre polynomial coefficients and the normalized
parameters r1, r2 and Zs in Eq. (4) is easy to find as follows.

A function yðZÞ defined on ½�1; 1� can be approximated by an n-order Legendre series as

SnðZÞ ¼ a0P0ðZÞ þ a1P1ðZÞ þ � � � þ anPnðZÞ (10)

where the coefficients a0; a1; . . . ; an are chosen to minimize the error

E ¼
1

2

Z 1

�1

½SnðZÞ � yðZÞ�2 dZ (11)
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which is achieved by letting

qE

qai

¼ 0; i ¼ 0; 1; . . . ; n. (12)

Substitute the equations resulted from inserting Eqs. (6) and (10) into Eq. (11), into Eq. (12) finally yields the
Legendre coefficients for the function yðZÞ

ai ¼

R 1
�1 yðZÞPiðZÞdZR 1
�1 PiðZÞPiðZÞdZ

¼
2i þ 1

2

Z 1

�1

yðZÞPiðZÞdZ (13)

For a symmetrical PWL function, the Legendre coefficients can be obtained simply by substituting Eq. (4) into
Eq. (13). Since Eq. (4) is an odd function, the even-order Legendre coefficients are equal to zeros, i.e., a2k ¼ 0
for k ¼ 0; 1; . . . : The odd-order Legendre coefficients are given by

a2kþ1 ¼

1
2
ðr1 � r2ÞZsð�Z

2
s þ 3Þ þ r2; k ¼ 0

ðr1 � r2Þ
R 1
Zs
ðZs � ZÞP2kþ1ðZÞdZ; k ¼ 1; 2; . . .

8<
: (14)

To evaluate the fitness between the Legendre series and the PWL function, the fitness indicator (FI) is defined
as

FIðnÞ ¼ 1�

R 1
�1
½SnðZÞ � yðZÞ�2 dZR 1
�1 yðZÞ2 dZ

(15)

The closer the value of FI is to 1, the better is the fitness.
It can be seen from Eq. (14) that all the odd-order Legendre coefficients a2kþ1; k ¼ 0; 1; 2; . . . except a1 can

be expressed by the product of r1 � r2 and a ð2k þ 3Þ-order polynomial of Zs. There are three unknown
parameters, Zs; r1 and r2 to be identified in the PWL model, so at least three equations are needed. The
equation corresponding to a1 is definitely necessary, otherwise it is only possible to obtain r1 � r2 instead of r1
and r2 no matter how many equations are used. The order of Zs in a2kþ1 is 2k þ 3, so the larger k is, the higher
is the order and the harder is it to solve the corresponding equations because high-order equations may have
no analytical solution or have multi-solutions. Since the lower order polynomials usually contribute more to
the function to be fitted, as can be seen from Fig. 3 of the single-degree-of freedom example in Section 5.1, the
lower order coefficient equations will have better signal-to-noise-ratio (SNR) for extracting the PWL
parameters. So the equations corresponding to a1; a3 and a5 are chosen for the PWL parameters estimation in
this paper.
Fig. 3. Fitness of the nth order Legendre series for approximating the PWL function in Section 5.1.
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From Eq. (14), a1; a3 and a5 are deduced as follows:

a1 ¼
1

2
ðr1 � r2ÞZsð�Z

2
s þ 3Þ þ r2 (16)

a3 ¼ �
7

8
ðr1 � r2ÞZsð1� Z2s Þ

2 (17)

a5 ¼
11

16
ðr1 � r2ÞZsð1� 3Z2s Þð1� Z2s Þ

2 (18)

The PWL parameters are then obtained

Zs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ

14a5

33a3

s
(19)

r1 ¼ a1 �
4ðZs þ 2Þ

7Zsð1þ ZsÞ
2

a3 (20)

r2 ¼ a1 þ
4ð3� Z2s Þ

7ð1� Z2s Þ
2

a3 (21)

By means of these equations, the normalized knot value Zs and PWL stiffness r1 and r2 can be directly
computed from the Legendre coefficients.

4. Identification procedure

Combing DPE method and equations in Sections 2 and 3 results in a two-step method for identifying the
physical parameters of PWL systems as follows:
�
 Step 1. Approximate the PWL restoring forces by Legendre series with unknown coefficients and employ
the DPE method to identify the parameters using the least-squares technique.

�
 Step 2. Substitute the identified Legendre coefficients into Eqs. (19)–(21) to get the normalized PWL

parameters Zs, r1 and r2, then calculate the physical parameters xs, k1 and k2 using Eq. (5).

4.1. Direct parameter estimation (DPE)

Direct parameter estimation method uses lumped parameter equations of motion as the identification
model. For a general N degree-of-freedom system with an external force uiðtÞ applied at the ith degree-of-
freedom, the equations of motion are

mi €xi þ
XN

j¼1

f ijðdij ; _dijÞ ¼ uiðtÞ; i ¼ 1; . . . ;N (22)

where mi is the mass corresponding to the ith degree-of-freedom, xi , _xi and €xi are the displacement, velocity
and acceleration of the ith degree-of-freedom, respectively, dij ¼ xi � xj ðdii ¼ xiÞ and _dij ¼ _xi � _xj ð

_dii ¼ xiÞ

are separately the relative displacement and velocity, and f ijðdij ; _dijÞ is the restoring force between the ith and
the jth degrees of freedom.

A polynomial representation of f ij renders Eq. (22) as

mi €xi þ
XN

j¼1

Xp

k¼0

Xq

l¼0

aðijÞklðdijÞ
k
ð_dijÞ

l
¼ uiðtÞ (23)
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Fig. 4. The identification procedure.
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with p and q as the highest orders of dij and _dij of the polynomial series, respectively. Once assuming that the
system variables xi , _xi, €xi and ui are known at Np sample data points, the equations of motion (23) can be
solved for the unknown coefficients mi and aðijÞkl in a least-squares sense, which best fit the measured data.

When the PWL restoring force of the system is approximated with a Legendre series, Eq. (23) becomes

mi €xi þ
XN

j¼1

cij
_dij þ

XN

j¼1

Xp

k¼0

aðijÞkPkðdijÞ ¼ uiðtÞ (24)

where dij is the normalized relative displacement and PkðdijÞ is a k-order Legendre polynomial of dij. As
mentioned above, the least-squares technique can be used to identify the values of the coefficients mi, cij and
aðijÞk.

4.2. Computation of the parameters of a piecewise linear function

Once estimated, aðijÞ1, aðijÞ3 and aðijÞ5 can be substituted into Eqs. (19)–(21) to extract the normalized PWL
parameters ZðijÞs, rðijÞ1 and rðijÞ2. Eq. (5) is then used to calculate the physical parameters of the PWL restoring
force between the ith and jth degree-of-freedom, i.e., xðijÞs, kðijÞ1 and kðijÞ2.

The proposed two-step identification procedure is illustrated in Fig. 4.

5. Numerical simulation

5.1. A sdof system with piecewise linear stiffness

Consider the following sdof system with PWL stiffness [1]:

25 €xþ 15 _xþ f ðxÞ ¼ uðtÞ (25)

where uðtÞ is the excitation force, f ðxÞ is a PWL function given by Eq. (1) with the parameters xs ¼

0:0004; k1 ¼ 330; 000 and k2 ¼ 1; 500; 000.
In [1] uðtÞ is a band-limited white noise sequence, but in this paper harmonic excitation force uðtÞ ¼

600 sinð120ptÞ is adopted for the sake of simplicity. Details on the choice of excitation signal can be
found in [11].

The system is numerically integrated in a time interval from 0 to 4 s using a fourth-order Runge–Kutta
integration routine to generate the input and output data. The sampling frequency is set to 1000Hz.

Only 1000 points of sampled data (data points from 2000 to 2999) are actually used in the identification
procedure. It should be noted that the transient responses are included here to break the linear dependence
between displacement and acceleration [11]. The time histories of the acceleration, velocity, displacement and
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excitation force are assumed being measured simultaneously for the identification. Both the noise-free case
and the noise-polluted case are presented.

The mean-square error (MSE) [12] is adopted to reflect the error between the measured force value and the
predicted force value . The definition is

MSE ¼
100

Nps2u

XNp

i¼1

ðui � ûiÞ
2 (26)

where Np is the total number of samples used in the identification procedure, s2u is the variance of the
measured force. The MSE can take on any value equal to or greater than zero, with a value closer to zero
indicating a better fitness.

In the noise-free case, DPE method is used directly to identify the parameters of the system given by
Eq. (25). As the PWL restoring force is an odd function, only odd-order Legendre polynomials are used in
Eq. (24). Theoretical Legendre coefficients can be calculated by using Eq. (14) when the PWL restoring force is
assumed known. Table 1 presents the theoretical and identified Legendre coefficients, and the corresponding
MSE values, which vary with the highest order p of the Legendre series.

From the third row of Table 1, it is noted that the first three Legendre polynomials result in an MSE of
0.038%. However, such a small MSE value does not indicate a good estimation of the Legendre coefficients to
the theoretical ones especially for a3 and a5. It is surprising to note that the identified Legendre coefficients
change with p. Theoretically however, Eq. (13) indicates that the Legendre coefficients do not change along
with p. Vectors composed of the measured discrete data instead of continuous functions are used in the DPE
identification procedure and are not orthogonal to each other strictly, the identified coefficients will thus vary
with p. In order to get a good estimation using only the first three Legendre coefficients, p should be carefully
chosen.

Results of a large number of numerical simulations indicate that good agreement can be obtained when
pX9, while too big p increases computation complexity and even cause ill conditioning problem to
implementation. So p is selected to 9 in this model.

Substitute a1; a3 and a5 in each row of Table 1 into Eqs. (19)–(21) leads to the corresponding normalized
PWL parameters Zs; r1 and r2, respectively. The physical parameters xs; k1 and k2 of the PWL system can be
then obtained by using Eq. (5). The actual and identified physical parameters with the corresponding MSE
values are listed in Table 2. The identified PWL parameters are almost identical to the exact ones when p ¼ 9
or 11.

The exact and identified stiffness curves are illustrated in Fig. 5. Both the polynomial- and the PWL-type
stiffness curves are nearly identical to the exact one.

For the second case, measurements on the system excitation and responses are noise-polluted at a level of
5% of the corresponding root mean-square value of a white Gaussian noise signal. The noise-polluted signals
are low-pass filtered before used for identification. The exact and identified Legendre coefficients with the
corresponding MSE values are listed in Table 3 with different p. The MSE values in the noisy case are larger
than the noise-free one, but similar conclusions can be reached by comparing Table 3 with Table 1.

Similar to the procedures adopted for noise-free case, the physical parameters xs, k1 and k2 of the PWL
system can be obtained. The actual and identified physical parameters with the corresponding MSE values are
Table 1

Identified coefficients for Legendre polynomials using DPE (noise free)

a1 a3 a5 a7 a9 a11 MSE (%)

Theoretical coef. 303.17 127.07 32.83 �32.15 �11.30 17.66

Identified coef. ðp ¼ 5Þ 306.62 136.91 49.99 – – – 0.038

Identified coef. ðp ¼ 7Þ 303.79 127.56 37.60 �29.06 – – 0.018

Identified coef. ðp ¼ 9Þ 303.28 126.72 32.01 �36.50 �19.41 – 0.011

Identified coef. ðp ¼ 11Þ 302.96 126.79 31.61 �31.93 �13.92 17.51 0.006
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Table 2

Identified piecewise linear parameters (noise free)

xs ðmÞ k1 ðNm�1Þ k2 ðNm�1Þ MSE (%)

Actual value 0.0004 330,000 1,500,000

Identified value ðp ¼ 5Þ 0.000420 335,933 1,758,519 0.018

Identified value ðp ¼ 7Þ 0.000407 334,957 1,556,336 0.002

Identified value ðp ¼ 9Þ 0.000399 329,919 1,489,752 0.000

Identified value ðp ¼ 11Þ 0.000398 328,866 1,485,400 0.000
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Fig. 5. Comparison between the real and reconstructed stiffness curves (noise free): —, exact; - - -, reconstructed (polyn.); � � �,

reconstructed (PWL).

Table 3

Identified coefficients for Legendre polynomials using DPE (5% noise)

a1 a3 a5 a7 a9 a11 MSE (%)

Theoretical coef. 303.26 127.12 32.81 �32.17 �11.28 17.67

Identified coef. ðp ¼ 5Þ 311.11 143.93 56.54 – – – 0.576

Identified coef. ðp ¼ 7Þ 308.45 135.44 45.07 �24.93 – – 0.563

Identified coef. ðp ¼ 9Þ 307.46 133.40 38.33 �33.30 �18.44 – 0.557

Identified coef. ðp ¼ 11Þ 307.90 134.87 39.75 �27.38 �11.98 16.36 0.553

Table 4

Identified piecewise linear parameters (5% noise)

xs ðmÞ k1 ðNm�1Þ k2 ðNm�1Þ MSE (%)

Theoretical coef. 0.0004 330,000 1,500,000

Identified coef. ðp ¼ 5Þ 0.000425 337,818 1,885,857 0.573

Identified coef. ðp ¼ 7Þ 0.000414 336,935 1,690,637 0.558

Identified coef. ðp ¼ 9Þ 0.000406 332,242 1,598,919 0.555

Identified coef. ðp ¼ 11Þ 0.000407 331,992 1,623,056 0.555

C. Xueqi et al. / Journal of Sound and Vibration 320 (2009) 808–821816
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Fig. 7. Stiffness curve.
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listed in Table 4. The identified PWL parameters are slightly worse than those obtained for the noise-free case,
but they are still almost identical to the exact ones when p ¼ 9 or 11.

Fig. 6 shows the exact and identified stiffness curves in the noisy case. Both the polynomial- and the
PWL-type stiffness curves agree well with the exact one.

As a comparison, the method introduced by Kerschen et al. [1] is also used to identify the system. In this
method, the stiffness curve, i.e., the measured restoring force versus the displacement, is needed and plotted in
Fig. 7. Inspection of the stiffness curve indicates that the knot value occurs around 0.0004m. Then grid search
method is utilized to increase the accuracy. The MSE is computed for 200 knot values regularly spaced
between 0.0003 and 0.0005m. Fig. 8 presents the evolution of the MSE with the knot value. Optimum knot
value turns out to be 0.000403m with an MSE of 0.548%. The identified primary and secondary stiffnesses are
333,395 and 1,525,487N/m, respectively. It is a somewhat better estimation than that we get using two-step
method since its MSE is slightly smaller. However, the computing burden is much higher because inspection of
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Table 5

Exact and identified piecewise linear parameters (noise free)

xfs kf 1 kf 2 xgs kg1 kg2 xhs kh1 kh2

Exact 0.01 5000 3000 0.02 3000 2000 0.02 2000 4000

Identified (noise free) 0.0096 5115 3196 0.0187 3091 2071 0.0196 1986 4051

Identified (5% noise) 0.0095 5022 3243 0.0194 3113 1989 0.0188 1983 4041

C. Xueqi et al. / Journal of Sound and Vibration 320 (2009) 808–821818
the stiffness curve and grid search processes are involved. Actually, both methods provide a reliable estimation
since the mean-square errors are around 0.55%.
5.2. A three-degree-of-freedom system with piecewise linear stiffness

In this section the proposed identification procedure is applied to a three-degree-of-freedom PWL system
shown in Fig.9. The motion equations of the system are given by

50 €x1 þ 20 _x1 � 20ð _x2 � _x1Þ þ f ðx1Þ � gðx2 � x1Þ ¼ 0

40 €x2 þ 20ð _x2 � _x1Þ � 20ð _x3 � _x2Þ þ gðx2 � x1Þ � hðx3 � x2Þ ¼ 0

20 €x3 þ 20ð _x3 � _x2Þ þ hðx3 � x2Þ ¼ u3

8><
>: (27)

where u3ðtÞ ¼ 40 sinð5ptÞ is a harmonic excitation force, f ðx1Þ, gðx2 � x1Þ and hðx3 � x2Þ are the PWL restoring
forces of the springs. According to Mohammad et al. [4], the parameters can be identified with only one
excitation location on the system. The parameters of the springs are listed in Table 5.
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Table 6

Exact and identified system mass and damping parameters (noise free)

m1 c1 m2 c2 m3 c3

Exact 50 10 40 10 20 10

Identified (noise free) 50.95 8.33 40.53 10.91 20.27 9.44

Identified (5% noise) 50.78 10.39 40.83 10.82 20.4 8.89
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Fig. 10. Comparison between the real and reconstructed stiffness curves of the 3dof system (the first dof, 5% noise): —, exact; - - -,

reconstructed (polyn.); � � �, reconstructed (PWL).
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Fig. 11. Comparison between the real and reconstructed stiffness curves of the 3dof system (the second dof, 5% noise): —, exact; - - -,

reconstructed (polyn.); � � �, reconstructed (PWL).
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The system is numerically integrated in a time interval from 0 to 10 s using a fourth-order
Runge–Kutta integration routine to generate the input and output data. The sampling frequency is set
to 500Hz.
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Fig. 12. Comparison between the real and reconstructed stiffness curves of the 3dof system (the third dof, 5% noise): —, exact; - - -,
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Only 1000 points of the sampled data (data points from 501 to 1500) are actually used in the identification
procedure. Both a noise-free case and a case of 5% noise level are considered. The identified mass, damping
and PWL parameters are listed in Tables 6 and 5. p ¼ 9 is adopted in the identification procedure.

From Tables 6 and 5 it can be seen that the proposed identification procedure can be easily extended to
multi-degree-of-freedom PWL system. However, the accuracy of the identified parameters is worse than that
in the sdof case. The MSE is 0.28% and 1.78% for the noise-free case and the noisy case, respectively.

Figs. 10–12 shows the exact and estimated stiffness curves of all the PWL springs in the noisy case. It should
be noted that although the three-degree-of-freedom system has both hardening- and softening-type springs,
the presented identification procedure still gives acceptable results.
6. Conclusions

A two-step procedure based on DPE method and Legendre series approximation has been presented for
identifying physical parameters, i.e., mass, damping, stiffness and knot, of a single- or a multi-degree-of-
freedom nonlinear system with symmetrical PWL restoring forces. The method takes the full advantage of the
simplicity of the DPE method and the priori knowledge of the PWL system. Neither iteration nor search
process is necessary in the method, and the physical parameters of the system can be obtained easily.

Numerical simulations for a single- and a three-degree-of-freedom systems using data without noise or with
5% noise level demonstrate that the proposed method performs well in the presence of noise and can deal with
both hardening- and softening-type PWL nonlinearity. When the highest order of the Legendre polynomials is
equal to 9, good agreement between the identified Legendre coefficients and the corresponding theoretical
values can be obtained, and good estimation to the system physical parameters can be acquired as a sequence.
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